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1. INTRODUCTION 

In the investigation of the vibrational response of a mortar tube 
system which is subjected to initial conditions, boundary constraints 
and applied actions with the normal mode method of dynamic analysis a 
nonlinear equation occurred for which no explicit solution could be 
found in the literature. Since this equation of motion describina the 
vibrational displacement of a conical ballistic tube with a concentric 
cylindric bore is inherent to many mortar as well as gun tube systems, 
an explicit analytical solution is being derived for a variable domain 
characteristic to ballistic tubes. 

2. FORMULATION OF 11iE EQUATION FOR 11iE TRANSVERSE VIBRATIONS 
OF A CONICAL BALLISTIC TUBE WITH A CYLINDRIC BORE 

Yne transverse vibrat1ona1 dlspiacement of a beam with arbitrary 
cross section under the influence of applied forces is governed by the 
equation of motion 

[EI y"(x,t)]" + pA y(x,t) = F(x,t), (2 .1) 

where y is the lateral displacement, x the coordinate measured along the 
axis of the beam, t the time variable, E Young's modulus of elasticity, 
I the moment of inertia of the cross-sectional area with respect Lu x, 
p the density, A the cross-sectional area, and F(x,t) the acting force. 
The symbols ' and • denote the partial derivatives 

a a ax and at ' respectively. 

Adopting the normal mode method of dynamic analysis the solution of 
the inhomogeneous equation for a given set of boundary conditions can be 
approximated to any degree of accuracy by superimposition of orthonormal 
functions representing eigen-solutions of the homogeneous equation to 
the specific boundary problemsl. Hence the problem of deriving the 
solution to Eq. (2.1) for a set of boundary conditions is reduced to 
solving the homogeneous partial differential equation for the same set 
of boundary conditions. 

[EI y"(x,t)]" + pA y(x,t) = 0 (2.2) 

1s. Timoshenko 3 D. H. YoungJ W. WeaveP3 VibPation Problems in Engineering, 
1974, G. Wiley and Sons, Ina., NY. 
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Since flexural rigidity (EI) and mass unit length (pA) are time 
independent for practically all gun tube vibrational problems, we can 
separate the variables by setting 

y(x,t) = g(x) sin(at+a), (2. 3) 

where a is the frequency of vibration and a is the phase angle, and 
obtain a homogeneous fourth-order ordinary differential equation for the 
displacement amplitude g(x): 

[Eig' '] ' ' 
2 

a-pAg 0 (2.4) 

The fundamental system of solutions consists, in this case, of four 
linearly independent solutions, g1 , g2, g3 , and g4 , which must be found 

for the construction of the general solution to Eq. (2.4): 

4 

g =~c g £...J n n 
1 

(2. 5) 

The constants c1 , c2 , c3 , and c4 must be determined to within an 

arbitrary constant in each particular case from the boundary conditions 
at the end of the beam. In general, the end boundary conditions for gun 
tube vibrational response problems are physical constraints on deflection 
y, slope y', bending moment [Ely''], and shearing force [Ely'']'. For 
example, at a fixed end the deflection and slope are equal to zero 
(y ~ 0, y' = 0); at a simply supported end the deflection and bending 
moment are equal to zero (y' = 0, [EI y"] = 0); and at a free end the 
bending moment and the shearing force both vanish ([Ely''] = 0, [Ely'']' 
=OJ. At an interior boundary the continuity of deflection, slope, 
bending moment and shearing force must be preserved. Since these functions 
appear in the formulation of the eigenvalue problem, we will derive 
explicit analytic expressions for them concurrently. 

In this study we are only interested in the case where Young's 
modulus of elasticity and the density are constant and the beam is a 
conical ballistic tube with a cylindric bore. The geometry of the beam 
is outlined in Figure 2.1. 
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Figure 2.1. Geometry of the Concentric Circular Conic Beam 
with a Concentric Circular Cylindric Bore 

From geometric considerations we can derive the following relations: 

(2.6) 

2n R 
~n (R4 r4) EI = E r dcf> { r 3dr = .••. flexural rigidity,(2.7) 

Jo J ' \ I r 

2n R I ., .,\ r r 
pA = P { d<P J rdr = p1T ~RL rL} •..• mass per unit length. (2. 8) 

r 

Substituting Eqs. (2.6), (2.7), and (2.8) into Eq. (2.4), we obtain 

(2. 9) 

R 
f; = __!_ 

r + (:t _ :r) ---L.,...x-:-~-r 
, , t r 
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3. DERIVATION OF THE FOUR LINEAR INDEPENDENT SOLUTIONS 

The explicit form of Eq. (2.9) suggests the following coordinate 
transformation: 

z = ~ - 1, 
dz 
-=a dx 

i 
(3.1) 

where the new variable z is now dimensionless and defined in the domain 

rLrR~ - 1. rRr - ... 1 Jl . ..~n-r ... mnc:f- l'11'r"rAnf- WA!llnnn' C:'V'C:f-Amc: f-._h,.p 'v'~'ri ~hLil.Lp 7_. -, - ~••"'wv ""''-6.1..4"-"••"" """u..t'v•• WJ.;;1'-''-''''~J ·- ---- - -, 

which is the ratio of wall thickness to bore radius of the ballistic 
tube, lies within the doman 0 <z< 1. Therefore, the investigation will 
Tn~~nl,, ha ,.-.oco+ .... 1r-+aA +"" +"h;r rY-;:n.m~+~..;"' An. .... n.: ..... "'& ..; ......................... ,...... ,-., __ ,r.: ..... ,.... -··• uta.Lll.LJ Ll'-' .&.'-'~'-.I..L..._'-'"''-' '-V '-IL.L.;:) ~'IOIVI .;;'-.L..I.\.. UVUIQ...Lll V.l. .1.11\..C.l.C;:)\..o \...(1J.J.Y.L.ll~ UU\.. 

the mapping of Eq. (2.9) from the x-space onto the z-space, we get 

(3.2) 

where the separation constant a is redefined as 

kw 2 with k 
_J_E_ 2 /Rt - Rr \ 1 a = = l 2P ra , a = \ J - L + L r 

~ r 
(3.3) 

The ordinary differential Eq. (3.2) has regular singular points at z = 0, 
-2, (-1 + i), (-1 - i), and an essential singularity at z = oo. Since 
z = 0 is only a regular singularity, we can obtain a solution in the 
neighborhood of the origin by a series expansion. We try 

g (z) 

00 

= '""'~ '7n+v 
~ .... \} .... , 
v=O 

a 'f 0, 
0 

(3.4) 

with the exponent n and all the coefficients a still undetermined. By 
\} differentiating twice, we obtain 

L: n+v-2 
av(n + v)(n + v- l)z . (3.5) 

v=O 

12 



By multiplying this expression by zm and differentiating it again twice, 
we get 

~a (n + v)(n + v 
~ \) 

l)(n + m + v- 2) 

v=O 

(n+m+v-4) x(n + m + v - 3)z . 

By substituting into Eq. (3.2), we have 
00 

~ :1 (n v) (n 1) frn 2)(n ,,., n+v + + \) - + v + + v + L.J -v .. , L" .. A..J-

v=O 

+4(n + v + l)(n + v)zn+v-l + 6(n + v)(n + v- l)zn+v- 2 

co 

(3.6) 

n+v-31 4 t4(n + v- l)(n + v- 2)z J - w (2 + z)z ~ avzn+v = 0. (3. 7) 

v=O 

The uniqueness theorem of power series requires that the coefficients of 
each power of z on the left hand of Eq. (3.7) must vanish individually. 

The lowest power of z appearing in Eq. (3.7) is zn- 3 for v = 0. 
The requirement that the coefficient is zero yields 

2 4n(n - 1) (n - 2)a = 0. 
0 

(3.8) 

Since a
0

, by definition, is the coefficient of the lowest non-vanishing 

terms of the series, we have 

n(n 2) = 0. 

The roots of this indicia! equation are n = 0, 1, 1, 2 resulting in 
three independent power series 

co co co 

gl = Dlvz" g2 = z L a2vz" ' g3 = 2L " z a3vz . 
v=O v=O v=O 

13 

(3.9) 



Since n =. 1 is a double root, a fourth linearly independent solution may 
be obtained by multiplying the regular solution g2(z) by a logarithmic 
term and adding another power series: 

00 

g4(z) = g2(z)ln z + ~a4vzv+n, 
v=O 

(3.10) 

For the eigenvalue problem we need, in addition to the deflection g(z), 
the slope g , the bending moment [Eig ], and the shearing force [Eig ] . z zz zz z 
To directly obtain explicit expressions for these physical functions~ we 
will slightly modify the approach. Integration of-Eq. (3.2) leads t~ 

... for n 

K4 
1 

1, 2, 3 and k 
n 

0, l, 2. 

l 00 - r 
2 4 

~ ln z ~a2v l k2 
+ w + 2 

0 

00 

r 7k? La2v 

2 

+ 2 + v)2 + (k? 
0 -\ - / ' -

+ + \) 

z 

+ 3 + 

00 

+ }'a . r ,...--. -2 ..,----_ - + z l 
k4 + 3 + \) J L...J 4V L 1<.4 + L. + \) 

0 

for n = 4 and kA to be determined. 
q 

Integrating the above equation again, we have 

2 
4z + 6z 

14 

(3.11) 

(3.11.1) 

, k
2

+2+v z 
vJ k2 + 3 + z 

J k 2+2+v 

v)2 z 
/ 

(3.11.2) 

(3.12) 



Substituting the power series Eqs. {3.9) and {3.10) into this equation, we 
have 

00 

1 
k + 3 + v 
n 

v] 
k +v+3 z n 

+ k + 4 + z 
n 

for n 1, 2, 3 and k = 0, 1, 2; n 

+ v -

( 
3 2 ) k4+v-1 

x z + 4z + 6z + 4 z 

1(4 + 1(4 z + w4 ~~ ln z ~ o .,o · .,1 L.J. ~2v 
0 

+ 

X (-=-k-
2 

-T-. 
1
-::2:---+-\1-. + k 

2 

1 
+ 3 

1 

v)J 
k2-k4 1 + 

k2 + 4 + z + a4v k4 + 3 

z v]} zk4+v+31 + 
k4 + 4 + 

15 

2 
+ 2 + v 

(3.12.1) 

2 ) k2+v-1 
+ 4z + 6z + 4 z 

I 

+ v -

1 

[k4 
2 

+ 2 + v + v 

(3.12.2) 



for n = 4 and k
4 

to be determined. 

The uniqueness of power series requires that the total coefficient of 
each power of z vanishes all by itself. For the indicia! equation roots 
n = 1, 2, and 3, we have 

0 z : 

1 z : 

2 z : 

-Kl o· -K2 = 0; -K3 = 0 0 
, 

0 0 

~ Kn 
0 o· , n = 1, 2, 3 

-Kl + 2.1.4a12 
::; o· -K2 + 2.1.4a21 1 , 

1 

-K3 
1 

+ 2.1.4a30 0 

n = 1,2,3 

2.1.6a12 + 3.2.4a13 = 0 

2.1.6a30 + 3.2.4a31 0 

~ a n,4-n 
1 
2 an, 3-n; n=l,2,3 

4 

= o· , 

3 z : w 2.1.4a12 + 3.2.6a13 + 4.3.4a14 - 3 . 2 . 2a10 

2.1.4a21 + 3.2.6a22 + 4.3.4a23 0 

2.1.4a30 + 3.2.6a31 + 4.3.4a32 0 

(Equations continued on next page) 
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1 r3 3.2a13 + 2.1a12 
1 / w4 \ l • 8 14 = - 4.3 Lz 3:2 \4} 2a10J 

1 r~ 3.2a 4 
+ 2.Ia 3 l n=2,3 a = - 4.3 ; n,5-n n, -n n. -n 

L , J 

4 
w 2.1a21 + 3.2.4a22 + 4.3.6a23 + 5~4.4a24 -

4
.
3 

. 2a
20 

= 0 

------... ~ aiS s\ [ ~ . 4.3al4 + 3.2al3 +-} . 2.lal2 - !.3 

5 z 

+ 3. ~a31 + } • 2. Ia30] 

£ ,. A w
4 

'"- \ ~ + o.~.qal6 - 5.4 \'a12 + all/ = u 

4 
w 3.2a31 + 4.3.4a32 + 5.4.6a33 + 6.5.4a

34 
-

5
_
4 

. 2a
30 

0 

1 r3 1 -= a = - - l- . 5. 4a 6 + 4. 3a 5 + -
4 

. 3. 2a 
4 n,7-n 6.5 2 n, -n n, -n n, -n 

(Equations continued on next page) 
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6 z : 

( ~ 4 ) {za_ • _ + a-,., ?_-,
1
) lJ 

, .. ' \ u,.J-n ... I 
n = 1, 2 

~34 - - 6~5 [T · 5 •4a33 + 4•3a32 + i · 3· 2a31 - 5~4 

4.3a
14 

+ 5.4.4a15 + 6.5.6a
16 

+ 7.6.4a
17 0 

4.3a23 + 5.4.4a24 + 6.5.6a25 + 7.6.4a26 - ~~5 (za22 + azl) 0 

4.3a32 + 5.4.4a33 + 6.5.6a34 + 7.6.4a35 - ~\ (za31 + a30) o 

... a n,B-n 

1 
+'A· 

"'T 

n 1, 2, 3 

6.Sa 
7 + 5.4a 6 n, -n n, -n 

(3.13) 

Without loss of generality we can set the coefficients a 11 , a12 , a 13 , a 21 , 

a22 , and a23 to zero. By inspection and mathematical induction we obtain 

the following recurrence relations for the coefficients: 

Kl 
0 

K2 
0 

K3 
0 0 

Kl = K2 = 0, K3 = 8a30 1 1 1 

~ {'\ = 0, 
1 /w4\ 

alO ~ v, all = al2 = a al4 36 \4/ 13 

(Equations continued on next page) 
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a20 1 0, a21 = a22 = a23 = 0, 

a30 1 0, a • ·- 1 
2 , a32 = 31 

1 
a n,v+1 ---=---~=---~---~ (n + v) (n + v - 1) 

1 (~4) a24 = 120 

5 
24 , 

1 1 
a33 = -rr a34 240 + 

(n + v - 1) (n + v - 2)a n,v 

1 (w4
) 

300 4 

1 
+ (n + v- 2)(n + v- 3)an.u-l + 4 (n + v- 3) (n + v- 4) 

--, - -

1 (w4
\ 

x an,v-2 - (n + v - 1) (n + v - 2) 4/ 

... for n 1 , 2 , 3 and v = 4 , 5 , 6 , • • • . (3.14) 

To derive the irregular solution, we apply the un1queness theorem of power 
series to Eq. (3.12.2). Because the logarithmic terms vanish, we have 

0 z : 

1 z : 

0 

4.3a"> 1 + K1 
"".L .L 

0 

2 
z : -4.la20 - 6.3a21 - 4.Sa22 

This expression is 1 0; to cancel it we must require that 

-4.1a20 - 6.3a21 - 4.Sa22 - 4.3.2a
40 

0 

(Equations continued on next page) 
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3 z : -l.la20 - 4.3a21 - 6.Sa22 - 4.7a23 - 6.3.2a40 - 4.4.3a
41 

= 0 

4 z : -3a"', 
L:l 

-6.4.3a41 - 4.5.4a42 = 0 

5 9w 
4 

( J z : -Sa22 - 4.7a23 - 6.9a24 - 4.lla25 -
2 2a

21 
+ a 20 ( 4. 5) 

-3.2a40 - 4.4.3a41 - 6.5.4a42 - 4.6.5a43 = 0 

___ ___,~~ a43 - 6\ . { [f . 5.4a42 + 4.3a41 + i . 3.2a4o] 

r 
+ llla25 +} • 9a24 + 7a23 + i . Sa22 + (4.:)2 

6 z : 

4 
w -4.3a41 - 4.5.4a42 - 6.6.5a43 - 4.7.6a44 + 6 . 5 . 2a40 0 

(Equations continued on next page) 
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7 z : 

, t r '7 'I 
~ UI . 6.sa43 + 5.4a42 

l. 
..,. a44 = - 7.6 + 4 . 4.3a41 

__ 1 {w4) 2aJ rl3a..,£ 3 
11a,r- + 9a,A L I: A + +-::;-. 

u.~ ,,. / "tVJ L "0 " "=> "'+ 

1 
. 7a23 + 

11 
(:4) (za22 a21)] J +- + 

4 (5. 6) 2 

4 
9 4 11 6 13 4 1s 13 

w (z ) - a24- · a25- · a26- • a27- (
6

.
7

)2 a23 + a22 

4 
-5.4a42 - 4.6.Sa43 - 6.7.6a44 4.8.7a45 + ~. 6 (2a41 + a40) 0 

- _1 !r~ 7.6a~~ + 6.5a~-
1 5.4a._ ~ a~,.. + 7 

q~ 8. i ll2 44 4~ 4 4l 

1 (w4) (za41 + a40~ Fsa27 
3 13a26 - 7.6 :r + +-;:;-. 
l 

1 
9a24 + 

13 -(~4) 
(za23 + a22 )11 + lla25 + 4 . 

~- -- 2 l6.7J- ,- I \ --,J, 
(3.15) 

From this pattern we can deduce the general recurrence formula: 

a · 4,v+l (4 + v)~3 + v) {[~ (3 + v)(2 + v)a4,v + (2 + v)(l + v) 

1 1 (w
4

4
) x a4,v-l + 4 (l + v)v a4,v-2- (3 + v)(2 + v) 

+ ~ \1 • r (?\1 • 71 - ~4 'v-4 J I . I '-- v • , J 

_, ~ 

+ (2v + 3) a2,v+1 + ~ (2v + 1)a? + (2v2+ 5) (w4) 
-, v ( v + 3) ( v + 2) 2 4 

(3.16) 

21 



To ascertain that Frobenius' method yields series solutions which not 
only satisfy our fourth-order differential equation but also converge 
over the region of interest (0 <z< 1), we have to determine the convergence 
of the series. The recurrence formulae (3.14) and (3.16) exhibit a 

(~4) dependence for the coefficients an,v which is of the following 
'- ., 
structure: 

anO' anl' an2' an3 

an4' anS' an6' an7 

"" 

"" 

an8' an9' anlO' anll "" 

(~4) 0 

(~4) 1 

1 .. 4\ 2 

\;) 

(3.17) 

Therefore, we will apply the D'Alembert ratio test to the ratio of the 
coefficients a 4 and a For large v, we can approximate the n,v+ n,v 
recurrence formulae for the regular solutions, Eq. (3.14), and for the 
nonlogarithmic part of the irregular solution, Eq. (3.5), by 

3 -a 2 n,v+3 a n,v+2 ! a + 0 (~) 4 n, v+ 1 v 
(3.18) 

In order to deduce a recurrence formula which contains only terms propor-
tional to a 4 , a , a 

4
, ... we will use the recurrence formula for n,v+ n,v n,v-

the (v+3)-th term in addition to that of (v+4)-th term. 

a n,v+3 
3 -a 2 n,v+2 a n,v+l 

Addition and subtraction of Eqs. (3.17) and (3.18) yield 

a n,v+3 
4 -a 5 n,v+4 

a = ~ a - a - ~ a + 0 (
1

) n,v+l 5 n,v+4 n,v+2 10 n,v v · 
22 

(3.19) 

(3.20) 

(3.21) 



These relations still contain the coefficient anjv+2 . To eliminate the 

a 2 dependency, we apply relations (3.20) and (3.21) to the n,v+ 
[(v+3)-2,(v+l)-2] and .[(v+3)-4,(v+l)-4]-th coefficients. 

a n,v+l 

a 
n,v-1 

a n,v-1 

4 -a 5 n,v+2 

4 - - -a 5 n,v 

4 
a =-a n,v-3 5 n,v 

3 + 0 (&) a -a n,v 10 n,v-2 

1 1 
+ 0 (~) -a +-a 2 n,v-2 20 n,v-4 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

By successive substitution of Eqs. (3.2l)j (3.22), (3.23), and (3.24) 
and simple manipulation we obtain the following identity in the form of 
a limit: 

. . { an, v+4 
11m\ a 
v-+oo { n 'v 

Setting 

R lim 
\)-+o:l 

a n,v 3 
a + I6 
n,v-4 

lim 
. \)-+o:l 

a n,v 
a n,v-4 

1 
64 + (3.26) 

(3.27) 

and taking the limit as v~, we derive a quadratic equation for the 
ratio of the coefficients: 

(3.28) 

Its roots are 

R - - 1 1 
4 and 16 (3.29) 
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Using these values, we can establish a lower bound of the radius of 
convergence for the series solution as 

r* = min (1R1 1 
1 -i) - 4 ' IR2 1 = min c rz, 2) = 12 (3.30) 

which is equal to the distance between the point z = 0 ana the regular 
singular points z = (- 1 ± i). Since our power series, Eqs (3.9) and 
(3.10) are of the form 

00 00 

g (z) n-1 
}.an 

\) 
0 (z ln z) ) >z,v \) 

(3.31) z z + z n \) 4n ..... •• ' ¥ 

0 0 

(n = 1, 2, 3, 4· 
' 

04n ... Kronecker delta function); 

they converge at the point z = o. The power series solution to Eq. (3.2), 

4 

g(z) ~ y g (z), (y •.• arbitrary constants), _L....J_nn n (3.32) 

1 

is convergent for z = rei 8
, 0 < r < r*, - n < 8 < n, in the z-plane cut 

along the negative real axis and uniformly and absolutely convergent for 
any interior domain, r < r**, where 0 < r** < r* = 12. 

- iy 
l 

X 

T -2 6 )) BRANCH CUT 
DUE TO LOG Z 

___/' / 

Figure 3.1 . Domain of Convergence for g(z). 

, e = arctg (f)] [z iy i8 ~x2 + 
2 

= X + = re r = y 
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( ' n+v ~ ~ r~ ,_ ~' n ~n Since each of the terms gnv\zJ = anvz T u4n\~ ~u ~J a2v~ , 
n = I, 2, 3, 4, is a continuous function of z and the partial solutions 
g , n = 1, 2, 3, 4, converge uniformly for lzl < r**, the power series n -
solution g(z), Eq. (3.31), is a continuous function in our domain of 
uniform convergence. With g (z) continuous and g(z) uniformly convergent, nv 
both the differentiated and the integrated series are power series which 
again are continuous functions and have the same radius of convergence 
as the original series. 

By use of Eqs. (3.31), (3.16), and (3.14) and performing some trivial 
mathematical manipulations we can express deflection, slope, bending 
moment and shearing force as 

4 
~ 

g(i; z) = ~ ykg(1, k; z), 1 = 1, 2, 3, 4, (3.33) 

k=l 

where the parameter 1 refers to the following physical functions: 

R. = 1 ... · g(z); deflection 

d 2 ... dz g(z); slope 

3 ... [ ( (z + 1) 
4 

- 1) ::2 g(z)] ; modified bending moment 

modified shearing force. 
(3.34) 

The yk are the coefficients of the four linearly independent solutions 
g(l, k; z), k = 1, 2, 3, 4, and must be determined to within an arbitrary 
constant in each particular case from the boundary conditions. The four 
linearly independent solutions and their modified derivatives are given 
by 
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00 

g(t, k; z) 
~ n 
~ c(!, k, n)zu + o

4kg(1, 2; z)1n z, (3.35) 

n=O 

where the coefficients c(t, k, n) are defined as 

c(t, k, -n) = 0 for all n = 0, 1, 2, 3, ... (3.36) 

c(1, 1, 0) = 1; c(l, 2, 0) = c(1, 3, ·0) = c(l, 4, 0) = 0 

c(l, 1, 1) = 0; c(1, 2, 1) = 1; c(l, 3, 1) = c(1, 4, 1) = 0 

c(1, 1, 2) = c(1, 2, 2) = 0; c(l, 3, 2) = 1; c(1, 4, 2) = 0 

c ( 1, k, n) 
1 'r, tLt en l)(n- 2)c(1, k, n- 1) + (n- 2) n (n - 1) 

x (n- 3)c(1, k, n- 2) + i (n- 3)(n- 4)c(1, k, n- 3) 

I A\ , 
1 f.w

4
"T} (2 c ( 1 , k , n - 4 ) + c ( 1 , k , n - 5) )j (n - 1) (n - 2) \ 

(czn - ll c (1, 2, n - 3 
1) + 2 (2n - 3) 

1 x c(l, 2, n- 2) + (2n - 5) c(l, 2, n - 3) + 4 (2n - 7) 

x c(l, 2, n- 4) + Zn - 2
3 

2
) 2 (~

4) (2c(1, k, n- 5) 
(n - 1) (n -

~ l ) 
+ c(l, k, n- 6))j J ; n = 3, 4, 5, ... (3.36.1) 
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c(2; k, n) = nc(l, k, n + 1) + 64kc(l, 2, n + 1); for all n=O,l,2,3, ... 

(3.36.2) 

c(3, 1, 0) = c(3, 2, 0) = c(3, .3, 0) = 0; c(3, 4, 0) = 4 

c(3, 1, 1) = c(3, 2, 2) = 0; c(3, 3, 2) = 8; c (3' 4' 2) = 6 

c(3, k, n) = 
4 

w 
n (n - 1) i [2c(l. k, n - 3) + c(l, k, l - - - n - 4)] 

2n - 1 l 
-64k n(n _ l) (2c(l, 2, n - 3) + c(l, 2, n - 4)] i 

n = 2, 3, 4, I I I (3.36.3) 

c(4, 1, 0) = c(4, 2, 0) = 0; c(4, 3, 0) = 8· c(4, 4, 0) = 6 , 

c(4, k, n) = (:4) { [2c(l, k, n - 2) + c(l, k, n - 3)] 

1 [2c(l, 2, n - 2) + c(l, 2, n - 3) ll -6 -At. ..,. 
"'tJ\. Jl -, 

n = 1, 2, 3, ... (3.36.4) 

and o4k is the Kronecker delta function (6 
for m = n). mn 

0 for m # n and 6 mn 

4. FREE LATERAL VIBRATIONS OF A CONICAL BALLISTIC 
TUBE WITH A CYLINDRIC BORE 

The determination of the eigenvalues of the separation constant 

1 

1 2 'I_..___, -- .. _.__. .. ,. ~· --· • - -a Kw ana ~ne re1a~1ve va1ues or ~ne coett1c1ents y
1

, y 2, y
3

, and y
4 

are contingent on the boundary conditions at the ends of the beam. Let 
4 

us assume that the solution of Eq. (3.2), g(l, z) = ~Yk g(l, k; w4;0, 
1r...., 1 
~-· 

is constrained 
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(4.1.1) 

where ~l' ~2 , ~ 3 , and ~4 are any of the physical functions given in Eq. 

(3.34). In matrix formulation, the above boundary value equations can 
be written as • 

g ~2 ,1; 

g (.~.3 ,1; 

z . 
r' 

z . 
r' 

g(£4
,1; z,; 

~ 

g ~3. 2; 

g (.~. 4. 2; 

z . 
r' 

z . 
r' 

g(£3,3; 

g (.~. 4. 3; 

z . 
r' 

z . 
r' 

g(~3 ,4; zR.; 

g(l'.4 ,4; z,; y4 

( 4. 2) 

A non-trivial solution of Eq. (4.2) exists only if the determinant of 
the coefficients is equal to zero 

g ~3 ,1; 

lg(R-4' 1 ; 

{1 ('l 2 . 
0 ,-1' ' 
g (.!.2. 2; 

g (£3. 2; 

g ~4,2; 

w ~ g 01'3; 
w ~ g 02 ,3; 

"'' g ("'3'3; 

w~ g ~4 ,3; 
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w~ g(£1,4; 

"'~ g ~2,4; 

w' g (.~.3 ,4; 

w 4) g ( R. 4 . 4 ; 
( 4. 3) 

0 

0 

0 

= 0 



This equation furnishes the means for the determination of the eigenvalues 

(w4
)n and, consequently, from Eq. (4.2) the ratios of the coefficients 

y2/y1 , y3/y
1 

and y4/y1 and from Eq. (3.33) the eigenfunctions gn(l;z) as 

well. 

The roots of the.characteristic Eq. (4.3) represent the eigenvalues 
of the system and correspond to the natural frequencies of the beam. 
Using the boundary conditions, Eq. (4.1), and the orthogonality relation 

for the eigenfunctions, one can show that the eigenvalues (w4) must be 
~ n . 

positive or zero.L. Due to the complexity of the functions .g(R., k; z; w4
) 

the e~genvalues (w4)n cannot be determined analytically but must be found 
numer1cally. 

As a numerical example, we will consider the eigenvalue problem of 
the free transverse vibration of a circular co~ical tube with a circular 
cylindric bore where the bottom of the cone is a fixed end and the top 
is allowed to vibrate freely (Figure 4 .1) and compare the· solution to 
+h; c n...-nhl ~"" 1.&,; +h +ho .&,.~a +.-n.-..~ .. ~~ .... r-1"11. , • .:h..,.n+.:~~r- "& n ,......,:..,,... •• 1 n1111111 + •• l...l"t.. 
L-U.L~ _tJ.&.VLI.L,.,UI ".LL.U Loll'"' .&..&.'"''"' II..LQU;)V'C.L;)'C V..LU.LQII...LUU;) U.l. a. \....1..L\...U.1.Q.1. II.UU'Co 

FIXED END FREE Ef'.~D 

Figure 4.1. Geometry of Numerical Example 

We select steel w1tn a density of 7.84 x 103 kg/m3 and a Young's 
modulus of elasticity of 2.1 x lOll Pa as the tube material, a beam 
length of l.OOm, an interior radius of O.OSm and for the circular pipe 
an exterior radius of 0.06m and determine the exterior radii R and R

1 by keeping the volume constant r 

2 
A. S. Elder, "Free and Foraed Vibrations of a Tapered Cantilever Beam," 
University of Delaware; M. A. Thesis, June 1956. 
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" vh. cone 

and varying D 
1'\. • 

r 

D D 
nR.nr = v . p1pe 

( 4. 5) 

Tables 4.1, 4.2, and 4.3 are representative samples of the obtained 
numerical results. 

TABLE 4.1. NATURAL FREQUENCIES OF A CONCENTRIC CIRCULAR 
CONE WITH A CYLINDRIC BORE AS FUNCTION OF THE 

MODE OF VIBRATION FOR R = 0.95 

n Q w D. n n n 

1 9.23175 6.32619 .45929 

2 18.66643 15.83683 .17867 

3 28.86741 26.50023 .08933 

4 39.18171 37.09654 .05621 

5 49.56180 47.69570 .03913 

6 59.98144 58.29474 .02893 

7 70.42839 68.89379 .02227 

8 79.49283 
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TABLE 4.2. NATURAL FREQUENCIES OF A CONCENTRIC CIRCULAR 
CONE WIYH A CYLINDRIC BORE AS FUNCTION OF YriE 

n 

1 

2 

3 

4 

5 

6 

7 

8 

MODE OF VIBPATION FOR R = -0.95 

0 (1) ~ 
n n n 

3.67169 6.32619 -.41960 

13.36686 15.83683 -.15596 

24.81891 26.50023 -.06345 

35.66632 37.09654 -.03855 

46.41514 47.69570 -.02685 

57.11542 58.29474 -.02023 

68.89379 

79.49283 

TABLE 4.3. NATURAL FREQUENCIES OF A CONCENTRIC CIRCULAR 
CONE WITH A CYLINDRIC BORE AS FUNCTION OF VARIOUS 

RADII 

IRI "r c +I R I) WI "r c -I R I) 

1 . 6.01764 

. 90233 6.66899 

.80417 10.15110 7.48786 5.16764 

.70550 8.52967 

.60631 12.37331 9.92501 7.75756 

.50661 11.87835 

.40637 17.10772 14.80818 12.69508 

.30560 19.69097 

.20429 31.65520 29.45615 27.34957 
lf\'JA'l r:::Sl 7t::nSl" 

.~V"-"'T...> ffJUe #UVU'"" 
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Tables 4.1 and 4.2 contain the first eight natural frequencies, Qn' 

of a concentric circular cone with a concentric circular cylindric bore 
for two selected values of R

1 
and Rr expressed by the ratio R = 

(Ri - Rr)/max (Ri - Rr). The wn's are the corresponding eigenvalues for 
the circ~lar t~be. The quantity 8 = In - w l/w expresses the deviation n n n n 
of n from w . Table 4.3 exhibits the dependence of the first natural n n 
frequency on the radii of the cone. 

The implication of the nwTaerical result to the geometrical descript
ion of gun tubes for lateral tube motion can best be seen from Figure 
4.2. Here we plotted the deviation of the natural frequencies of the 
concentric circular cone with a concentric circular cylindric bore from 
the circular tube versus the normalized difference between the left and 
right radii of the cone. The plot displays clearly that for eigen
frequencies in the lower principal mode of vibration the commonly used 
approximation of a conical gun tube by a cylindric beam is not justified. 
However, for the higher principal modes of lateral vibration we can well 
substitute the eigenvalues of the beam for the correct ones. 

Having the natural frequencies determined we can use Eq. (3.33) to 
compute the deflections of the centerline of the concentric circular 
cone with a concentric cylindric bore in the r-th mode. Figure 4.3 is a 
representative example. 1ne values on the abscissa correspond to the 
deflections of the beam axis normalized by the maximum displacement and 
on the ordinate to the axial distance of the beam from the left boundary 
normalized by the layer of the beam. 
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Figure 4.2. Deviation of the Natural Frequencies of a Concentric Circular Conic Beam with a 
Concentric Circular Cylindric Bore From those of an Equivalent Circular Tube 
as Function of the Cone Radii 
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Figure 4.3. Deflection of a Concentric Circular Conic Beam with a Concentric Circular Cylindric Bore Versus Axial Distance for the First Five Principal Modes of Lateral Vibration 
for R = .95123 
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